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The Ryderberg electronic wave packet dynamics of hydrogen atom near helium surface in an electric
field is investigated using the semiclassical method. The autocorrelation function is calculated when the
photoionized electron is excited by a short laser pulse for different atom-surface separations. The results
show that new recurrences appear because of the helium surface, and the number of recurrent peaks
increases with the decrease in atom-surface distance. The new feature is ascribed to the bifurcation of new
closed orbits in the classical dynamics of the photoionized electron. Therefore, surface properties have a
significant effect on the spectrum of nearby atoms or ions.
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In recent decades, short-pulse laser technology has been
developed, and one of its applications is the generation of
electronic wave packets for examining their evolution in
atomic systems[1−5]. The Rydberg wave packet is an in-
teresting model for studying the correspondence between
quantum and classical mechanics. This packet has been
proven to travel like a classical particle along the clas-
sical orbit within a short time, but it exhibits quantum
behavior within a long time[6].

Recently, the autocorrelation function of the Rydberg
H atom in an external field has been studied using the
closed-orbit theory[7−9]. The autocorrelation functions
of the Rydberg H atom in magnetic and strong electric
fields have been investigated intensively[5]. In our previ-
ous work, the photodetachment and time-resolved pho-
todetached spectroscopy of H− in an electric field near
an elastic surface was examined[4,10−12]. In 2004, Zhang
et al. obtained improved values for the dissociation en-
ergies of molecular hydrogen and its ion using a high-
resolution pulse-amplified laser to probe the second dis-
sociation limit[13]. Recently, Wang examined the wave
packet dynamics of the photodetachment of H− near an
dielectric surface[14]. With regard to the time-domain
spectrum of hydrogen in an electric field near helium sur-
face, however, no analysis has been done to date to our
knowledge. Therefore, we examine the autocorrelation
function of the Rydberg H atom in an electric field near
helium surface. A short-pulse laser is used to stimulate
the H atom in an electric field near helium surface. Us-
ing the closed-orbit theory, the autocorrelation function
of the H Rydberg wave packet corresponding to different
atom-surface distances is calculated.

The H atom nucleus is assumed to be positioned at
the origin of the coordinate system. The elastic surface
is fixed in the z = −d plane, where d is the distance
between the atom and the elastic surface. The electric
field is perpendicular to the elastic surface along the z -
axis positive direction. The problem has cylindrical sym-
metry, so cylindrical coordinates (ρ, z, φ) are used. The
Hamiltonian of a hydrogen atom in a homogeneous static
electric field F is[15]

H =
1

2

(
p2

z + p2
ρ + l2z/ρ

2
)
− 1/

(
ρ2 + z2

)1/2
+ Fz. (1)

By adopting a scaled-variables method and semiparabolic
coordinates (u, v), and then considering the case of lz =
0, the transformed Hamiltonian is defined as

H̃ =
1

2

(
p2

u + p2
v

)
+

1

2

(
u4 − v4

)
− ε

(
u2 + v2

)
− 2, (2)

where Pu = du/dτ, pv = dv/dτ , and ε = E/F 1/2 is the
scaled energy. After this transformation, the Coulomb
singularities are eliminated.

The above analysis does not consider an elastic surface.
In fact, there is no interaction between the electron and
the elastic surface unless the electron reaches the elastic
surface. When the electron does, it returns. To under-
stand better the nature of the problem, their interaction
is dealt with as a fully elastic collision. Using fully elastic
collision, the formula can be written as

pu = p′u, pv = −p′v, (3)

where pu, pv and p′u, p
′
v are the momenta before and af-

ter the collision. The above formula is the basic principle
of the fully elastic collision model.

Therefore, the motion equations for (u, v, pu, pv) of Eq.
(2) can be numerically integrated, namely,

u̇ =
∂H̃

∂pu
, v̇ =

∂H̃

∂pv
, ṗu = −∂H̃

∂u
, ṗv = −∂H̃

∂v
. (4)

An independent variable τ is introduced, which connects
to time t̂ by[15]

dt̂

dτ
= u2 + v2. (5)

Using the standard fifth-order Runge-Kutta method to
integrate the motion equations, all the closed orbits of
the Rydberg hydrogen atom near an elastic surface along
with a constant electric field with different atom-surface
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Fig. 1. Some closed orbits drawn in (ρ, z) space. (a) Five
orbits with the atom-surface distance d = ∞; (a)+(b) eight
orbits with d = 2000 a.u.; (a)+(c) nine orbits with d = 1500
a.u. (a)+(d) ten orbits with d = 1000 a.u.; (a)+(e) eleven
orbits with d = 500 a.u.

distances are determined. In our calculation, ε = −0.266
and F=2000 V/cm; closed orbits with scaled actions
smaller than 25 are used. Some closed orbits are shown
in Fig. 1. For each closed orbit, its action Sk and scaled
period Tk are calculated, where k runs over all of the
closed orbits. These are shown in Table 1.

Table 1. Properties of the Electron of the H Atomic
Systems at ε = –0.266 and F = 2000 V/cm, with

the Scaled Action Less Than 25 and with Different
Atom-Surface Distances

d
a

o
b θc

i S
d

k T
e

k

1 0.00 446 2.26

2 5.00 9.18 4.58

∞ 3 13.00 13.52 7.33

4 15.00 17.92 10.43

5 15.23 22.42 13.35

6 30.00 18.40 6.91

2000 a.u. 7 90.00 13.05 4.77

8 180.00 8.01 1.88

1500 a.u.

6 24.31 20.06 7.95

7 30.00 15.22 5.34

8 90.00 11.89 2.49

9 180.00 6.91 1.73

6 17.00 20.23 7.97

7 25.00 15.83 5.18

1000 a.u. 8 60.00 10.45 2.85

9 90.00 10.14 2.40

10 180.00 4.89 1.44

500 a.u.

6 17.00 19.02 7.89

7 14.00 12.00 5.21

8 25.00 14.73 5.12

9 60.00 8.07 2.66

10 90.00 8.63 2.31

11 180.00 3.42 1.13
aThe atom-surface distance of the H atomic systems; bnumber
of orbits; cinitial outgoing polar angle (in degrees) of the or-
bits; dscaled action; eperiod of closed orbits in units of pi-
coseconds.

The autocorrelation function is an important quantity
that can reflect the dynamic properties of the Rydberg
wave packet and can be defined as[16]

ψAC(t) = 〈ψ(0)|ψ(t)〉, (6)

where |ψ(t)〉 is the wave function at time t. It shows that
the overlap between the wave function at time t and the
initial wave function |ψ(0)〉 is directly measured. The au-
tocorrelation function to the system for the H atom near
an elastic surface in an electric field is applied. The initial
state of the atomic system is ψi(r). In the present case,
the wave packet is produced by applying a short-pulse
laser which is assumed to have the following form[16]:

f(t) = fm exp(−t2
/
2τ2) cos(wt+ φ), (7)

where w, fm, and τ are the frequency, peak amplitude,
and pulse width, respectively. The system can be excited
to state ψf(r) with energy Ef centered at Ec

f = Ei + w
and with a few 1/τ widths.

Applying the time-dependent perturbation theory and
using the same method given in Ref. [16], the autocorre-
lation function can be written as

〈ψ(0)|ψ(t)〉 =

∫
dEe−iEt|g(E−Ei)|2

[
Df(E)

2(E − Ei)

]
, (8)

where

g(Ef − Ei) =

∫
dtf(t)ei(Ef−Ei)t (9)

is the Fourier transformation of the short-pulse laser, and
Df(E) is the oscillator-strength density. Adopting the
rotating wave approximation,

g(E − Ei) = Aτ
(π

2

)1/2

e−(E−Ei−w)2τ2/2eiφ. (10)

As is known, |g(E−Ei)|2 is a Gaussian shape with width
1/τ . It attains the peak when the energy Ec

f = Ei + w,
and its value diminishes quickly when E moves away
from Ec

f by more than a few 1/τ . Therefore, the effective
part of Eq. (8) is confined to an interval centered at
Ef and with 1/τ width. According to the closed-orbit

Fig. 2. Plots of the module of M(t) of the H atom autocorre-
lation function at scaled energy ε = −0.266, and the electric
field F = 2000 V/cm for different pulse widths with the atom-
surface distance d = ∞. (a) τ = 0.2 ps; (b) τ = 0.4 ps; (c) τ
= 0.8 ps; (d) τ = 1.0 ps.
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theory[7−9], the oscillator-strength density can be ap-
proximated as

Df(Ec
f + δE) = Df0(E

c
f ) +

∑

k

Ck(Ec
f )

× sin

[
Tk(Ec

f )δE +
1

2
T ′

k(Ec
f )δE

2 + ∆k(Ec
f )

]
, (11)

where T ′
k(Ec

f ) = [dTk(Ec
f )/dE

c
f )], δE is the deviation

from Ec
f , and the sum is over all the closed orbits of the

system. Equation (11) is an approximation of the more
accurate expression of oscillator-strength density in the
closed-orbit theory. Each oscillation in Eq. (11) corre-
sponds to a closed orbit of the atomic system that leaves
and finally returns to the nuclei. The oscillation is related
to the stability property of the corresponding closed or-
bit, the laser polarization, and the initial quantum state.

Using Eqs. (11) and (10), in Eq. 8, replacing (E −Ei)
in the denominator of the integrand by w and carrying
out the integral, we can obtain

ψAC(t) =

[
τA2

√
π3(Df0)

4w

]

× e−iEc

f
t{e−t2/4τ2

+
∑

k

[C−
k (t) + C+

k (t)]},

C±
k =

[
Ck

2(Df0)α
∓
k

]
(12)

×e−[(t∓Tk)2/4τ2(α∓

k
)2]±i(∆k−π/2), (13)

where α±
k =

√
1 ± i[T ′

k(Ec
f )

/
2τ2]. When T ′

k approaches

zero, α±
k approaches 1. Equation (12) is the autocorre-

lation function involving the laser-pulse parameters and
the dynamic variables in the closed-orbit theory. The
details on parameters Df0, Ck, and ∆k can be found in
Refs. [15, 17, 18]. From the above formulas, the auto-
correlation function includes a sum of modified Gaussian
terms. It shows that each modified Gaussian term in the
autocorrelation function comes from a parent oscillation
term in the oscillator-strength density expressed in the
closed-orbit theory. Evidently, there is the following cor-
respondence: the pair of terms with the same index k in
the sum of Eq. (12) corresponds to the kth closed orbit,
and the two terms are centered respectively at t = Tk and
t= −Tk. The term centered at t = 0 in Eq. (12) comes
from the background term in the oscillator-strength den-
sity and is not related to any real closed orbit.

If a short-pulse laser of the form in Eq. (7) is applied
to H atom near an elastic surface along with a constant
electric field, and the detached electron wave function
is denoted by ψ(t), the autocorrelation function can be
written as

〈ψ(0)|ψ(t)〉 = C0M(t), (14)

M(t) = e−t2/4τ2

+
∑

k

[C−
k (t) + C+

k (t)], (15)

C0 =

[
τA2

√
π3(Df0)

4w

]
e−iEc

f
t. (16)

Fig. 3. Comparison of the module of M(t) of the H atom auto-
correlation functions at scaled energy ε = –0.266 and electric
field F = 2000 V/cm; τ = 0.1 ps. (a) Five peaks with the
atom-surface distance d = ∞; (b) eight peaks with d = 2000
a.u.; (c) eight peaks with d = 1500 a.u.;(d) nine peaks with
d = 1000 a.u.; (e) nine peaks with d = 500 a.u.

As shown in Eq. (15), the autocorrelation function of the
Rydberg H atom in an electric field near an elastic surface
contains (2k + 1) peaks centered at t = 0 and ±Tk. The
peak centered at t = 0 comes from the non-oscillatory
background term in the oscillator-strength density in Eq.
(11). The other peaks centered at t = ±Tk are related to
the oscillatory terms in the oscillator-strength density in
Eq. (11). In a comparison of Eqs. (14) and (15), M(t)
can be regarded as an effective autocorrelation function
because the constant factor C0 has no influence on the
experimental measurement.

By integrating Hamiltonian motion Eq. (4), some of
the closed orbits of the Rydberg H atom in an elec-
tric field near an elastic surface with the different atom-
surface distances d are determined. On this basis, the
autocorrelation function of H atom in an electric field
near an elastic surface with the atom-surface distance d
is calculated. The time dependence of the absolute value
of the autocorrelation function is entirely included in the
function |M(t)|, which is shown in Fig. 2 for positive
time. Due to symmetry |M(t)| = |M(−t)|, the negative
time part can be obtained. In Figs. 2(a)–(d), the auto-
correlations at four different widths of the pulse with the
atom-surface distance d = ∞ are shown. In the figure,
the peak is centered at t = 0 from the background item
in the oscillator-strength density and is unrelated to any
real orbit. From Fig. 2(a), there are five other peaks
centered at T = T1, T2, T3, T4, T5 which correspond to
five orbits. Figure 2(b) shows the interference with only
four peaks appearing. Figures 2(c) and (d) show the in-
terference with only two or three peaks appearing.

From the figure, when the width of the laser pulse be-
comes longer, the oscillations become smoother. This
phenomenon can be explained as follows. The electronic
wave packet produced by a narrower laser pulse is more
localized in space, and distinguishing those belonging to
different closed orbits is easy. As the laser pulse width in-
creases, distinguishing the packets becomes difficult due
to their space expansion and the interference between
them. Due to this effect, the width of peaks in the au-
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tocorrelation function increases, and even two adjacent
peaks merge into one.

As the atom-surface distance d becomes infinite, that
is, the surface is not located, the interaction between the
atom and the elastic surface becomes very weak. There-
fore, the influence of elastic collision can be neglected. In
this case, the number of closed orbits is the least, which
is only five. With a decrease in atom-surface distance
d, the influence of elastic collision becomes significant so
that the number of closed orbits increases. For exam-
ple, when the distance d = 2000 a.u., 8 closed orbits are
found. When d = 1500 a.u., 9 closed orbits are found.
As d is reduced to 1000 a.u., 10 closed orbits are found.
When d = 500 a.u., 11 closed orbits are found. The in-
formation on some of the orbits is shown in Table 1.

The absolute value of M(t) is a set of δ-like functions
shown as the peaks in Fig. 3. The recurrent peaks are
centered at Tk , which corresponds to a specific closed or-
bit of the photoionized electron. When the atom-surface
distance d is fixed, there is a series of recurrent peaks in
the corresponding autocorrelation function of the pho-
toionized electron. Figure 3 shows the autocorrelation
functions at different distances, where several plots are
placed together in overlay form. New recurrent peaks
are created due to the bifurcation of new orbits from the
existing orbits with decreasing distance d. Figures 3(a)–
(e) show the autocorrelation functions with five differ-
ent atom-surface distances d at a fixed laser pulse width
τ=0.1 ps. Among them, the peak centered at t = 0
comes from the background term, which does not belong
to any closed orbit. Figure 3(a) corresponds to the case
of free space. Five discrete recurrent peaks correspond-
ing to the basic closed orbits are shown in Fig. 1(a),
which is attributed to the large differences between the
adjacent orbits. Figure 3(b) shows the case when the
atom-surface distance d = 2000 a.u., where eight recur-
rent peaks can be found. Aside from the contribution of
the basic orbits in Fig. 1(a), the new peaks correspond
to the newly created closed orbits shown in Fig. 1(b).
Figure 3(c) also shows eight peaks in the autocorrela-
tion function with the atom-surface distance d = 1500
a.u., but there are 9 closed orbits as shown in Fig. 1(c).
This phenomenon occurs because the recurrent periods
of two orbits are very close to contribute a common re-
currence. Figures 3(d) and (e) show the cases of closer
distances d = 1000 and 500 a.u., respectively. The same
phenomenon of common recurrence exists in both cases,
resulting in more than one closed orbits contributing to
one recurrent peak. The height and width of the recur-
rent peak increase although the number of peaks is re-
duced. However, with an increase in the number of orbits,
distinguishing them is difficult because of their expansion
in space and the superposition between them. Generally,
there are less closed orbits in the system, and the periods
of neighboring orbits are significantly different when the
surface is far away from the atom. The recurrent peaks
in the correlation function peaks emerge distinctly, and
the corresponding closed orbits can easily be identified.
When the atom approaches the surface, more and more

closed orbits are bifurcated, and the electronic returning
periods of some orbits are very close, with some adjacent
peaks in the autocorrelation function merging into one
to create a wider and higher recurrent peak.

In conclusion, the dynamics of the Rydberg H atom
near a helium surface with different atom-surface dis-
tances in a perpendicular electric field is examined.
By applying the closed-orbit theory, the autocorrelation
function of the electronic wave packet is calculated when
a short laser pulse is applied to the system. With an
increase in the laser pulse width, the height and width
of the peak in the autocorrelation function increase, but
the number of peaks decreases. New recurrences appear
because of the interaction between the electron and the
helium surface, and the number of recurrent peaks in-
creases with a decrease in the atom-surface distance. The
new feature can be ascribed to the bifurcation of new
closed orbits in the classical dynamics of the photoion-
ized electron. These new features should be tested in
future experiments.
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